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BOUNDS ON INTEGRALS WITH APPLICATIONS TO RELIABILITY PROBLEMS

1. Summary

Certain statistical problems in life te sting and reliability
lead to the consideration of minimizing and maximizing certain
integrals of the form

[>]

| ¢, Fx)) ax  Flx) = 1 - P(x)

-40]
under the assumption that the distribution function F has in-
creasing hazard rate and that one or two moments are given. The
minimizing (maximizing) distributions for the special cases con-
sidered are members of the extremal class considered by A, Marshall
and the author [1l]. Bounds on the expected values of the minimum
and maxipum order statistics as well as the operating characteris-
tics of replacement policies based on age are obtained under these

assumptions

2. Statistical Motivation

For many statistical problems in life testing and reliability
it is natural to assume that the life distribution F (F(0) = 0)
has increasing hazard rate (is IHR). If F has density £ , then F
is IHR if and only if £(x)/[1 - F(x)] 4is nondecreasing in x .
In general F is said to be IHR if and only if 1n[l - F(x)] is
concave where finite. This property i1s enjoyed by most of the commonly

used life distributions; e.g.,

{ T exp(-%)  x 3 ©

Weibull: f(x)

1

elsevhere
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for a>1, A>0 , and

’)gxa-lexp(—%x) x>0

Gamma: f(x) = ‘{ ;rr(a—r

elsewhere

for @> 1, N> O . Distributions F for which In[l - F(x)]
is convex on [0 , =) are called DHR fgr decreasing hazard
rate. Properties of distributions with monotone hazard rate are
discussed in [2].

In addition to th*s assumption, some prior information in
the form of the mean My > and the variance 02 i ui of the

distribution may be known. Since in the IHR case

with equality only for exponential distribution, an estimate of
the coefficient of variation c/pl may represent the statistician's
belief in the amount of departure of the failure distribution from
exponentiality.

With the mean and variance assumed known we consider the

problem of minimizing and maximizing certain integrals of the form

(1) ) 9, F) ax

where F is TIHR. Integrals of such functions have been considered
by Karlin [3], Rustagi [4] and others for general distributions.
(See [4] for additional references). A related but more specialized

problem is that of minimizing (maximizing) integrals of the form

jo “o(x) aF (x)




assuming that certain moments of F are specified, (cf. (3.1)
and Theorem 4.1). Assuming no conditions other than the moment
conditions, this problem has been solved by H. P. Mulholland and
C. A. Rogers (1958). Their methods as well as those of many
others (e.g. Karlin and Shapley (1953) use the fact that the
class of all distributions subject to specified moment conditions
are closed under convex combinations. However, the class of IHR
distributions is not closed under convex combinations [2, p. 381]
and, therefore, we cannot use the classical methods. Instead we
consider very special cases using the methods of [1]. However,
we do obtain fairly explicit bounds which can be easily machine
computed.

Integrals such as (2.1) often arise in statistical appli-
cations. For example, let Ul < U2 < - < Un denote n ordered
observations from a population with IHR cdf F. Iet Wn = Un - U

1.

denote the sample range. Then we may seek to minimize (maximize)
% n = n
BW,) = | [1- RGP - F(0)] ax
0
where F(x) = 1 - F(x) . The integrand is of the form @(x , y)

where

P(x , y)=1-(1-y)" -y

is concave in Yy .
For another example, consider a replacement policy of the

form: Replace at time t or at failure, whichever occurs first.

We may then seek to minimize (maximize) the following integrals:

t
(i) ~/o F(x) ax F(x) =1-F(x)

~3-




i.e., the expected time between removals for either a failed or

nonfailed iten.

At
{i1i) J F(x) ax
. — .
F(t)
i.e., the expected time between failure removals using a replace-

ment policy based on t . The reciprocal of this quantity occurs

as an upper bound on the renewal function divided by *© , [5].
t—
(iii) J F(x) dx
O
F(t)

i.e., the expected time between planned replacements using a re-

placement policy based on % .

A related expression is:

(e}
(iv) / F(x) ax/%(t)
e
i.e., the mean residual. life of an item aged t . Bounds on densities
and failure rate functions will be discussed in a future joint'paper

with A. Marshall.

3. Bounds on Integrals when F is IHR with Specified Mean

If @(x , y) is sufficiently smooth the problem of minimizing

(maximizing)
| 9, Fe) ax
0

is comparatively simple. If F 1is IHR with mean and p(x)
Hy

b
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is increasing (decreasing) then

==

,I-Ll - 00 -] =L
(3.1) (x) ax (x) F(x) ax < (x) e T ax
i é)jo i Sh °

This result is essentially due to Karlin and Novikoff and follows
easily from their method of proof in [6]. Using (3.1) and the method

of proof in Karlin [3] and Rustagi [4] we obtain

L]

THEOREM 3.1: . If

(1) F is IHR,F(0) =0,

(o]
1) | x ) -y,
0
(1i1) #(x , y) is convex (concave) in y
(iv) % #(x , y) 1is nonincreasing (nondecreasing) in x ,

then

X

) ’ o o -IL
| oe(x, G (x)) ax B(x , F(x)) ax B(x , e T)ax
*/0 Fal (g)‘/o (%)j;

when the indicated integrals exist and where ¢ is the distribution

degenerate at ul .

PROOF: We show the lower bound, assuming @(x , y) 4is convex in y
and % $(x , ¥y) nonincreasing in x . Let —G'O(x) = e-x/p,l =
define

j 0

(3.2) I(2) =*/o $ [x, WG (x) + (1-7) F(x)] dx for OCAg 1.

_5_
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Using (iii) it is easy to check that I(A) is convex in A . If
I(A) achieves its minimum at A = 1 then certainly ao(x) will

minimize (2.1). This is possible if and only if

CIY(A) 1'7___ 1<0.
Now
I'(A) | _~/°°a.¢[ G.of )][5(.‘) F(x)
kl-_O Sy X, OX OX - P(x)] ax.
By (iv). % 3(x., y) is nonincreasiné in x . By assu.mptioﬁ
(iii) —g—y— @(x , y) is nondecreasing in y . But if we let

y = ao(x) , then

5 .
S p(x , ¥) ly:Go(x) is nonincreasing in x .

Therefore, by (3.1)

L 90 9 g g e

3 = B (x) &
2 ) FP Vg

and hence I'(A) | O . Therefore
A=1

J oG Ty e 6 G, T ax

If we assume @ (x , y) is concave in y and %¢ (x , y) 1s
nondecreasing in x , then all inequalities are reversed.

The other inequalities follow in a similar manner. ||
Of course an analogous thecrem can be stated for DHR distributions.

-6




et xl 9 X2 00000 Xn denote n independent observations on
& randam variable X with IHR distribution F . Let

U0, <--- U, denote the associated order statistics. Then

oo

s(u, - vl = | - FGOI® - - Fr)

=\/‘°°¢ (x , F(x)) ax
(6]

where @ (x , y)=1-7y = (1L - y)™. since $ 1is concave in y,

Theorem 3.1 applies and we have

n-1
0 ElU - U] gplz 1/k
k=1

for sharp upper and lower bounds on the expected range. Intulitively,
this inequality tells us that observations on IHR random variables
tend to cluster together more closely than observations from an
exponentially distributed random variable with the same mean. In a
similar manner we obtain sharp upper and lower bounds on the expected

values of the minimum and the maximum observations.

by L
(3.2) =< Ely] =j0 [F()1™ ax < py
n

5 n
(3.3) H, < E[U ] =j0 [1-F(x)] dxgulZUk
1
Note that @ (x , y)=axa—l[l - (1 - y)™] satisfies the hypotheses

of Theorem 3.1 for @ (x , y) concave in y and % #(x , ¥y) non-

decreasing in x when « > 1. Using this ¢ we can bound all moments

of Un . Namely




® a-1 n
foax jiuz Gul(x)] ax ¢ E(1]

- et - o0t eg | @@L - (0] ax.
U

Inequalities (3.2) and (3.3) ‘can be extended to include non-
identically distributed random variables. ‘I_‘he following proof is

due to A. Marshall..
THEOREM 3.2: If Fi(x) is IHR (DHR) with mean W, end 'G"i(x) = e'x/“i
(1=1,2,...,n) , then
n
[+ -] n, -
(1) j T Fy(x) ax > l/Zl/ui
0 i=1 - (K) 1

© n ® n
(11) A f1- 'i];]l'Fi(x)] dxé) X 1 -;]Jl' Gi(x)] dx

PROCF: First we show (i). By (3.1)

o i-1 ‘n

J T F,60 T, 8,600 Fy () ax
0 J=1

J=1i+1

w i-1 n
[ F,(x) G.(x)] G, (x) ax

for 1< i {n. By recursion we obtain

J’ SRR A ‘Fraj(x)u=1/2l
o g=1 Y (K)Yo  y=1 T Vi

-




To show (ii), note that again by (3.1)

Jg _TT'F (x) _rr' G (x) F (x) ax

J= i+l

& _rr F (x) _rr' G (x) G (x) ax .
Givo j=1 J=i+1

which in turn implies

L. [1—]TF(x)'rrG(x)]dx

j—1+l

- i-1 n -’
- F.(x) G.(x)] x .
é)*/o[ ijlli— a7

(i1) follows by recursion. ||

Part (i) tells us that the mean life of a éeries.system
with IHR comporients whose means are My (i=1, 2,..., n) exceeds
the mean life of a series system'with exponentially distributed
;;mponenxs and means’ By (i=1, 2,..., n). However, just the
reverse is trug for parallel system;s°

Additional properties éf order statistics from IHR (DHR)
distributions together with applications ;o life testing will

appear in a future report

4. Bounds on Integrals when T lis IHR with Specified Mean
and Variance |

Assume now that F is THR with mean My and Mo specified.
In [1] the class of extremal distributions for bounding F were
determined. Two rather special members of this class are

-9~
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exp (- aox) x < Tl
l'G'rl(x)=io 23
and .
: JE x<1- Vug — 5= TO'
1 - GT (x) = { -(x - TO)
0 exp [ ——— 1, x> Ty >
sz - 1

where ab and Tl are chosen to satisfy the moment conditions.
With these distributions and different assumptions on p(x) we can
improve the bounds in (3.1). The method we now use has been em-

ployed by Karlin and Novikoff [6] among others.

THEOREM 4.1 If
(i) F is IHR , F(0) =0
(ii) W) =1 and y, are specified
(iii) p(x) 41s convex (concave)

then

x) G, (x) ax § x) F(x
Jy et G ) é)jo o(x) F(x) ax

g (x)"G, (x) dx .
Sl

PROOF: Assume p(x) is convex. We know [1] that F(x) - ET (x)
0
has exactly two sign changes, say at Xy and X, Furthermore,
the order of the sign changes is - + ~ . Define a line £(x) so
that
pxy) = 4(x,) end p(x,) = £(x,) -

=10~




Since p. is convex , p(x) - £(x) changes sign at Xy and %,

in the order + - + . Therefore,
[o(x) - £(x)1[F(x) - Gp.(x)] € O
o 0 .
for all x . Integrating on Xx we obtain the upper bound on

[T ot Fe) ax
O .

The lower bound follows in a similar way using 5& (x) instead
1

of ETO(X) . |

The ordering of sign changes for p(x) - £(x) is of course
reversed when p 1is concave. ||

Using Theorem 4.1 and letting p(x) = x¥* for r > 0, one can

obtain improved bounds on - (r>2) in terms of My and My

The general problem of bounding integrals of the form

78 L T e
0

when F 1is TIHR with My and o specified seems quite diffi-
cult. However, it is possible to treat many special cases using
the properties of the extremal family considered in [1] . 1In
order to do this we repeat some of the notation in [1]. We can
assume without loss of generality that “1 = 1. It follows that

My satisfies 1 u,< 2. Let

-1
To=l-\/p2—l and T = -8, log (l-ao)

where ao in [0, 1] and Tl simuitaneously satisfy the

following equations:




Let
~b5 ='[G,I., ;'TZ Bl
where |
s x< A
e Gp(x) = e2x ) Lcxgr > Z)

0 xZT

and a , A (0 <AL TO) are chosen to satisfy the moment condi-

tions; i.e.,

©

jo [1-6 ()] ax=p =1

jo x[1 - GT(X)] dx = 5 -

Let

ZNER( MR AV S FE N

where

e 1* xT

l-GT(x)= T, T T
e-alT—a2 (x - T) x> T

and a; ¢ a, are chosen to satisfy the moment conditions as

. =12~




before. It is shown in [1] that for t > O
inf [1 - Gy(8)] ¢ 1-F(8) ¢ sup [1 - Gy(t)]

where the extremums are taken over A Uavl‘ . These bounds have

]
been tabulated for selected values of h, (1 ¢ b, < &)

4.1 Expected Time Between Removals. If X has distribution F,

then E[ min (X , )] =

Jotf(x) dx .

For an age replacement policy this denotes the expected time be-

tween removals using a policy determined by +t .

THEOREM 4.2. If F 1is IHR, F(0) =0 and p_l-_-.l,p,2

are specified, then

t t
(1) [ Fx) ax » anr
0 (},1.6273 0

%
(11) jo F(x) ax <

All inequalities are sharp.

PROOF : let F e 7 - (’275 Uﬁl&) where ¥ is the family of all

IHR distributions with prescribed moments My = 1l and ue 2

-13-




et T > 'I'l and s(T) be the crossing in (& , T) from above of

T
‘tinuous in T (see [1] p. 52).

1-6G, by 1L -F . We use crucially the fact that s(T) 1is con-

Case 1. t¢ s(T;) . From the definition of Gp We can see that
1

F(x) > ET (x) for 0¢gxg s(Tl)
1
and hence

‘/:ﬁ(x) ax > fotaTl(x) G

Case 2. t > s(w) . F(x) crosses ET (x) from above at s(w)

6]
and
F(x) g'é,l, (x) for x> s(e) . .
0
Hence
J F(x) ax J ET (x) ax
t t (6]
implies
t_ t_
jF(x)dx ZJGT(x)dx.
6] : 6] 6]
Case 3. S(Tl) < t< s(w) . Since s(T) is continuous in T ,

choose T > T, and & (Oca g '1‘0) such that s(T) = t. In

this circumstance G, €>U5 . A drawing will help.

14




1 =——— G (x) i
) \_\\’F(x)
Y \\

: R
O. o

N }
s(T) = ¢ Gl X
Let

: iy xg<t '
Pplx) = {o x>t

and define a line 4(x) such that ﬁ(xl) =1 and A(T) =0 .

Since clearly
[8,(x) - £(x)1[F(x) - Gp(x)] 20

for all =x ,

J. 19,00 - @I - Byl] e =

\/'t_ t_
o F(x) dx _Jo Go(x) ax 2 0 .

This proves (i) .

To prove (ii) we first note that

F(x) g.aT (x) =1 for 0g x Ty
6]

and hence

H

%
J F(x)ax gt fo t < Ty s
0

is sharp.
-15-




Also,
F(x) > 5& (x) for x> T
: T
implies
[ ex g [ By @0
F(x) &x G (X) &X =, =1 . t>T
0 =g T - kgl

is sharp. To complete the proof we need the function u(T) de-

fined for T, T¢ Tl . ILet u(T) bve the crossing in [T , o]

from below of 6& by F ; u(T) always exists (see [1]). We
use crucially the fact that u(T) varies continuously from

u(TO) > T, to u(Tl) =T .

Case 1. 't u (T,) . Clearly F(x) E&O(x) for x < u (T,)

implies
[ ¥ | g w
F(x) dx G (x) dx.
0 goTo

Case 2. T, < u(TO) <t < u(Tl) =T By continuity of u(T)

I
we can choose T such that u(T) =t . In this circumstance
GT elﬂu . The following drawing will help.

pE __F(x)
\\‘

e ET(X)

If F(x) < ET(X) for x ¢ t , the proof is obvious. Hence

. If x = w

suppose F(x) crosses Ei(x) from above at x b

1

-16-
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the probf is also obvious. Hence suppose xé £ =, let

' o T o
g, (x) ={o x>t

and construct a line 4(x) so that ﬂ(xl) =1 and ﬂ(xe) =0 .

Since
(8, (x) - £(x)1F(x) - Gp(x)1 g 0
for all x we have

J 1,60 - M0G0 - 507 ax

t t
= F(x) ax - | G ax < O .
fp Fo) ax - [ g0 g0 |

Although the above bounds must be computed numerically, they
can be easily programmed because of the simple form of the
extremal distributions.

If p, is the only moment specified (F IHR) , then

-t/uy

Lt
J F e -e T

h[ t_ 4{ t t < Hy
F ax
. (x) ax £ h b -

All inequalities are sharp. The lower bound follows from the
fact that F(x) crosses e—X/|J~l at most once and from above.
The inequality is clear for small © . If it were ever violated,
then a fortiori it would also be violated for t = + «© which is

impossible.

-17-




4,2 Mean Residual Life

The mean residual life of an-item aged t is.

_ftmf(x) dxﬁ(t) 5

If F is IHR , this ratio is necessarily nonincreasing in +© .

THEOREM.M-.Q: If F is IHR , F(O) = O and Wy =1, M, are

specified then

[, -t v < T
{1) F(x) ax inf G, (x) ax T t¢ T
F(t) ET(t)
0 t >T
r “‘l = l t = O
(i) j F(x) ax ¢ sup j Gp(x) ax 0t o
t GT eY_ .Vt
F(t) Gp(t)
“ME -1 t = + o

All inequalities are sharp.

PROOF: (i) Case 1. t¢ T, . Since F(x) S—G—T (x) for
0

nggTO we see that

jtmf(x) ax > ‘./tm_G—To'(X) dx = p, -t

-18-




is sharp and

F(t) ¢ ETO (t) =1

implies
[Fw e 5
JtF(x)dx > My -t
F(t)

Case 2. Tyt T, . Define u(T) as in Theorem 4.2 . If

6 < u(TO)

ftwf(x) ax > f:ETO(x) ax .

F(t) ETO(t)

If u(TO) <tg u(Tl) = T, , then choose T and Gy €~au 50
that GT(t) = F(t) . This can be done since u(T) is contimious

in T . By (ii) of Theorem 4.2 we have

_[Otf(x) ax < fotaT(x) ax .

Hence

f:f(x) o > jtwaT(x) ax

F(t) Gp(t)
as desired.
3 : = 2
Case 3. t > Tl We can always choose T =t and GT € 3 80

that

-19-




' QT(x) =0 for x>t and Ei(t) f’q .

Hence
—
J F(x) ax
t

F(t)

for t > Tl is sharp.
(ii) Agein we take cases.

Case 1. t < S(Tl)' The following drawing illustrates the

situation.

Clearly
oo_ oo_
| Feo e < [ Gy 0 ax
t t 1
in this case and

F(1) > 5 (&)

implies

Y




Case 2. s(Tl) < t < s(w) . By continuity of s(T) , there exists
T> T and A such that s(T) = t and F(t) = Ei(t) (6 exlg) N

By case 3 (i) of Theorem 4.2
-t )
/ F(x) dax Zf GT(x) dx
0 0]

implies

Case 3. 1t > s(w) .

Hence
JFwe < |G e - Vgl
F(t) ETO(t)
since
F(t) = ETO(t) at t = s(w) .
Since

L/tmf(x) dax

F(t)




is nonincreasing in t we have that

t .
F(t)

Jete ol

for t > s(e) is sharp . |
It is easy to show that if only pl' is specified (F IHR) ,

then the following imequalities are sharp.

jt”f(x)dx > {Sl-t :i:

F(t)
j F(x) ax < My e
e T —

F(t)

4.3 Expected Time Between Failure Removals

If an item is replaced either at age t or at failure, whichever

occurs first, then the expected time between failure removals will be

t
h/ F(x) ax .
0
th;

This ratio is nonincreasing in + if F is IHR . This ratio
also occurs in a bound on the renewal function. Suppose F is
IHR and N(t) 4is the number of renewals in [0 , t] for an

associated renewal process. Then it can be shown ([5], p. 8) that

+t
E[N(t)] < tF(t)/fo F(x) dx < E-l- .

~00.

%




It is therefore of some interest to obtain bounds on this ratio.

THEOREM b.4: If F is IHR, F(0) =0 and p, =1, u, are

specified, then

t
- Jo Gplx) 8x  tgp =1

Oge ¥ T
7€ 3 GTt

t_ {Ghn
(1) “/O F(x) ax > = "/O f}T(x; & WL EaT

F(t) GTEJQBUQ].. GT{t

t T
(ii) ‘fo Flx) ax ¢ = ~/o GT(X) dx Tyt < T
v €0 I G,T,e-:ill+ "—'G—T‘('t" -
sup
Gre L My t>T
T3 G.(% +
T

All inequalities are sharp.

PROOF (i) Case 1. If t ¢ s(T,) , then F(x) > G, (x) for O¢ xg ¢
- "1

and

Jotf(x) ax 3 JoﬁaTl(x> ax

—



implies the result.

Case 2. If s(Tl) £ t € s(w) , then there exists T such that

F(t) ='GT(t) where G € & This follows from the continuity

5 ¢
of s(T) . Hence

23 7 &
~/o F(x) ax > ~/o GT(X) dx
F(t) GTth

by (i) of Theorem 4.2. Since necessarily s(w) > H, , the first

bound in (i) is immediate.

Case 3. If t > s (o) we use the function v(T) . Let v(T)

be the crossing in (T , ») from above of 1 -G_ by 1 - F if

T
such a crossing exists. Otherwise let v(T) be the right-hand
endpoint of the support of F . Since v(T) is continuous in T g

choose T such that v(T) =t ; i.e., we have

Since GT(t) = F(t) and clearly
j F(x) ax < f B(x) dx
t t

we have

f'tr’()ax ftamdx

X X .

0 2 o T
th; GTZtS

ol




Case 4. t 2T, . BSince

s
L/ F(x) ax
0 L
ths '

is nonincreasing in t , we have

L/;t?(x) dx

F(e) 2 ¥
for all t . For t > T, this bound is attained by Gy - Il
1

(ii) Case 1. If t (T then F(t) > GT (t) = O . Hence the
o}

0 2

inequality is trivial in this case.

Case 2. t g_u‘(TO) . We use the continuity of u(T) again. If

t < u(T,) , then F(t) 'G'To(t) and

fotf(x) & < jot‘e'To(x) ax

implies the result.

Case 3. If u(TO) << u(Tl) = T, , then there exists T such
that GT(t) = F(t) by continuity of u(T) . Note G € &u . By

Theorem 4.2 (ii)

f tf( ) @ , i (x) ax
G B

[0} ¥ [0} & y

S *M‘Yig(iy—

Case 4. t 2T, . There exists Gj € ¥, corresponding toevery t

-25-




such F(t) ¢ ET(‘I:) j Ao ET is the extremal distribution fur-
nishing an upper bound on F(t) for t 2 T, . The following
drawing will help.

1

Since F(x) > ET(x) =0 for x> T we have
&1 . rt
f F(x) ax < GT(x) ax ,
0 0

and F(t) > GT(t) implies

JF(x)dx < jG(x)dx =

_TT'_ __(7_ T)l

GT(t) is t.abled for Hy =1 and Ho (1< My < 2) as the upper

bound on F(t) for the case t > T, -

The asymptotic expected cost per unit time under an age replace-

ment policy where an item is replaced either at failure or at time

whichever occurs first is [ecf. [7] p. 68]

c(t) = (Cl - c2) F(t) + cy

. fotf(x) ax

(c_.L > c2) - The methods of Theorem 4.4 will also provide sharp

-26-




bounds on this function.
If only p, is specified, (F:IHR),_then the following

inequalities are sharp?

v
~/' F(x) a&x . > ey for all t ,
0

e

t ” b
J Feo e < {ul

0 ——— >

F(t) 1-¢e"

where w depends on t and is determined by

B
WX
e dx = = 1.
h/o ot

The first inequality is attained by the exporential. The second
inequality is attained by the degenerate and exponentials truncated

on the right,

4.4 Expected Time Between Planned Replacements

If an item is replaced either at time t or at failure, which-
ever occurs first, then the expected time between planned replace-

ments will be

t—
J T ax .
a0
F(t)

This ratio is always nondecreasing in t .

e

A



THEOREM 4.5 If F 1is IHR , F(O) = O and oy = i M, are

specified, then

i £ 0t T,
|5 g | gy
F dx inf G (x) ax T t<T
0 & - YU, _0______T o S
F(t) an(t)
© ,
;1; fo GT(x) dx Tt > T,
Gy (%)
[ t_ .
3? jo GT(x)dx Ogtho
Gy ()
b t_ .
Jo F(x) d&x < b}sgpﬂ ‘/o GT(x) dx To <t Ty
F(t) ET(t)
o t>T

All inequalities are sharp.

PROOF: Clearly F(x) > F(t) for 0¢ x < t implies

[t t
J F(x) ax > j F(t) ax = ¢ F(t)
0 : 0

for all t> 0 . For t( To » the lower bound is attained with G

-28-
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Now we consider cases, according as t ¢ s(‘I‘l) or t> s(‘I‘l) ,
where s(‘I‘l) denotes the crossing point of 6‘1‘, (x) from above by
F(x) . 8
Case 1. T ,<tg S(Tl) . Let Gp €%, and let al(‘l‘) denote a
solution parameter for T . [see preliminaries to this sectionj
It can be shown that al(‘I‘) is a continuous function of T
([1] p. 52); Let w(T) denote the crossing of ET by F from

above in [0 , T] if it exists, Clearly w(Tl) = s(Tl) and.

0 w(T).< s(‘I‘l) .

Continuity of al(‘I‘) together with log concavity of F(x) insures
that for ¢ satisfying ‘I‘O < Bl s(‘I‘l) there exists T such that

w(T) = t where Gey e»ﬁh - A drawing will help:

=

lI ﬁ:;n:Lﬁ:i
i

Clearly we will have F(x) > ET(x) for x¢ t and hence

Jotf(x) x> JO+6T(X) G

F(t) Gp(t)

Case 2. s(‘I‘l) <t < s(w),

Choose T "and Gp eﬂB such that s(T) =t ; i.e., we will have

-29-
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O EE[T} T P

This is possible by the continuity of s(T) . Hence

/ t_ t_
F(x) ax > GT(x) dx
0

F(t) Gp(t)

by Theorem L4.2. Note that s(Tl) T so that we need only

consider Ggq €d5 for t> T .

Case 3. t > s(w)
In this case F(x) < ET (x) for x >t and therefore
0

F(t) G (%)

To prove the upper bound we again take cases.

Case 1. 0 t < Tye We may suppose F(t) < 1 (0t < To) since

otherwise
] F(x) dx
0 = -
F(t)

and this value is realized by GT 655 . Hence this is considered
0 . '

when we take supremums over ﬁ5 . We use crucially the continuity
-30-
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of r(T) where x(T) is the point in (&, T) thet F cvosses

ET from below if such a crossing exists. Clearly r(To) > TO 5 TERY,

1

0 TO r(TO) %

Consider now 0 t < r(TO) - By continuity of r(T) (see {1])

we can choose T so that r(T) =t . Then we have

X

o A r(T) =% X

By definition of r(T) , F(x) ¢ ET(x) for 0 xg<t and

F(t) = GT(t) where Gp €¥ Hence

5 -

fotf(x) x g /OtET(x) dx

F(t) ET(t)

Case 2. T, <t ¢ Tl - By case 1, we may assume t satisfies
r(TO) = u(TO) <t u(Tl) =T, . By continuity of u(T) choose
T and G Ex&l‘_ such that u(T) =t . The following drawing

will help;

S E(x)

A




By Case (3) of (ii) of Theorem 4.2 we have F(t) = GT(t) and

fotf(x) & g \/OtaT(x) dx

hence

t_ t_
f F(x) ax < j GT(x) dx .
D e e RS
F(t) Gp(t)
Case 3. t> ‘I'l . In this case the upper bound is attained by

G, (t); i.e.,
Tl

ETl(t)

If the only moment specified is the mean ul (F IHR) , then the

following inequalities are sharp.

" E Tty
J F(x) ax >
SU===aees &
F(t) inf jo G, (x) ax LT
Ew(t)
jtf()dx ]t'()dx t <
X su X
J o s o e "1
F(t) EA(t)
+ t > ul

Y




where

e-wx x<< T
-{ 0 X% DT

w and T are chosen to satisfy

&, ()

and
1 0L xg A

- _ o x-A
B —{ U x> A

(o <4 ;_Ll) . The proof 1s similar to previous proofs and uses

the methods of [1] pp. 43-Lk,
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